Properties of4Åcarbon nanotubes from first-principles calculations
نویسندگان
چکیده
منابع مشابه
Optical properties of calcium under pressure from first-principles calculations
Ion Errea,1,2,3,* Bruno Rousseau,2,3,† Asier Eiguren,1,2 and Aitor Bergara1,2,3 1Materia Kondentsatuaren Fisika Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 644 Postakutxatila, 48080 Bilbao, Basque Country, Spain 2Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasealekua 4, 20018 Donostia, Basque Country, Spain 3Centro de Fı́sica de Materi...
متن کاملMagnetic properties of Quantum Corrals from first–principles calculations
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin–polarized states. In order to classify the peaks in the calculated density of states with orbital ...
متن کاملFirst-principles calculations for nitrogen-containing single-walled carbon nanotubes
We present calculations for possible configurations of nitrogen-containing single-walled carbon nanotubes and their electronic properties obtained with the ab initio tight-binding FIREBALL method. It is found that nitrogen atoms can be energetically incorporated into the carbon network in three forms: Substitution, substitution with formation of a vacancy structure, and chemical adsorption. The...
متن کاملAmmonia synthesis from first-principles calculations.
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was u...
متن کاملTight-binding Hamiltonian from first-principles calculations
The tight-binding method attempts to represent the electronic structure of condensed matter using a minimal atomic-orbital like basis set. To compute tight-binding overlap and Hamiltonian matrices directly from first-principles calculations is a subject of continuous interest. Usually, first-principles calculations are done using a large basis set or long-ranged basis set (e.g. muffin-tin orbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2002
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.66.115416